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ABSTRACT ﬂdgq

A brief history is given of the experimental measurements
of the probability for the excitation of atomic hydrogen from
the H(1ls) state to the H(2s) state by electron impact. It ie
pointed out that the experiments leave the excitation cross

section, o uncertain by as much as a factor of two between

1s-2s
10.2 and 50 eV. The problem is then stated in theoretical terms.
A brief description of the close coupling approximation is given
and the desirability of an alternate method of approach

is pointed point. - The nonadiabatic theory is briefly reviewed.

A formalism for the nonadiabatic treatment of the scat-
tering of low energy s-wave electrons from atomic hydrogen is
developed, and the zeroth order (angle-independent) approximation
is explicitly solved. The zeroth order approximation for the

excitation of the 2s level from the ground state is described

by the samé equation used to describe elastic scattering below
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s
the 2s threshold, but with more complicatcd boundary
conditions. The solution has been effected Ly expanding the
wave function in terms of separable solutions. The cross scc-
tions O;5-p5 and o015~ os are directly obtained from the calcu-
lation. With the assumption of reciprocity it is aiso possible
to obtain.cas-zs. The elastic cross sections, ois-i1s, are within
one percent of the close coupling results in the triplet
case, but are about 20 percent greater in the singleét case.
wae inelastic cross sections, 0,5_,4, are reduced about 20
percent in the triplet case and 20 percent to 4O percent in the

singlet case relative to the close coupling results. ;Q(jq—ffd/z
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INTRODUCTION .

Within the last few &eats there has been a great renewal of
interest in the problem of the scattering of electrons with klnetgc
energy less than 100 eV from atomic hydrogen. The problem is of
interest as a basic problem of quantum mechanics while the resulting
cross sections are greatly desired by those studying stellar atmos-
pheres and interplanetary and interstellar space where atomic hydrogen
predomingtes. The upsurge in interest was started by the possibility
of using fast electronié computers to solve problems whose solution
had previously been too laborious; it was helped along by the tremen-
dous growth of interest in the.exploration of the solar system during
the last decade; and wag given a final push by the development of
experimental methods which allowed certain of the scattering and

4 . .
excitation cross sections to‘be measured in the laboiatory.

This paper is an attempt to expand the nonadiabatic scattering

theory, Temkin (1960, 1962A), to include inelastic scattering phenom-

. ena. This will provide an alternate, and it is hoped more accurate

procedure, to the close coupling methods, Burke and Smith (1962). aAs

shown lgfer it.mﬁy also shed some light on the accuracy of the close-

.coupging technique. In particular the inelastic S-wave scattering of

low energy elgctroqa'from atomic hydrogen will be treated and the pro-

bability of exéiting the target atom from the H(ls) to the H(2s) state

calculated. A; side products the elastic scattering‘croas sections
0'1.#\1. and 7., wtu/al'so be obtained.

7/
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. CHAPTER 1

History of the Problem

1. Experimental

L]

The laboratory measurements of the cr;s-on cross sections are of
basic importance to this thesis and will be briefly discussed. The
experimental ground work was laid by Lamb and Retherford (1950, 1951).
In fact they obtained some evidence as to the energy dependent shape
of the <TIS"28 curve near.threshold from measurements taken during
their investigation of tﬁe fine structure of the n = 2 states o£ H.
However, the first determined effort to measure the cross section was
made by Lichten and Schultz (1959). They measured CTIs-»zs from 10.2
eV (threshold) to about 45 eV.

‘N%V A brief description of the Lichten and Schultz experiment is in
order. Molecular hydrogen at a pressure of 2 mm was heated to 3000o K
in a tungsten oven. Under these conditions dissociation is 91 percent
complete [?ooley, Scott, and Brickwedde (1948)]. A collimated beam of
atom hydrogen flowed from the oven into a vacuum chamber where it was
croaséd‘?t right angles by an electron beam of controlled energy.

’Atomq exgited to the H(2p) state, with lifetimes of the order of
. 10-9séé, decayed with the emission of Lyman-alpha radiatidﬁ'while
<. still in the cg!lision region. However, atoms excited to the H(2s)

! are metastable ;nd hence could pass into a third chamber where they

were detected.: Two methods bf detection were used to obtain the ls-2sg

.crooo éection, In the first case the relative cross section was

[ N \



measured by use of a metallic detector from which impinging H(2s)
atoms ejected electrons. The scatter of ind' 'idual measurements at a
given energy was small, and hence the energy dependent shape of the'
excitation cross section could be accurately determined. However, the

published absolute cross sections depended upon a normalization of the

measurements to the first Born approximation between 30 and 40 eV.

The validity of this normalization procedure at such low energies has

since been called in question by Hummer and Seaton (1961) and others.
Secondly, H(28) can be quenched by an electric field, which causes
mixing of the 2s and 2p states. This considerably accelerates the
decay of the H(2s) atoms. The resultant Lyman-alpha radiation can be
detected. An absolute measure of the cross section was obtained using
the yield of the photon detector, the geometry of the apparatus, and
the known conditions of the gource and electron gun [Eichten and
Schultz (1959)/. The method of calculation was.taken from Lamb and
Retherford (1950). The results in this case were, however, uncertain
by a factor of two.

It i8 interesting to note that by placing a magnet between the
oven and the collision chamber, Lichten and Schultz could produce a
beam of-golarized atomic hydrogen. That is to say, the component of
the spin of the bouna electron along the imposed magnetic field lines
would;be either 41/2 or -1/2 according to the position of ;he oven.
These polarized beams could then be used to measure, in terms of the

total cross section, the probability of‘spin exchange occurring

between the bound and the scattered electrons.
L3 ’ . . . /' . ' ,
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With a similar arrangement, Stebbings et al. (1960) used a Lyman-
alpha detector to obtain the ratio of the 28 o the 2p excitation
cross sections. They modulafad the H(1s) beam from the oven at :hc:
rate of 100 cps by use of a toothed chopper wheel. This modulated
signal allowed them to extend the range of their measur;menta out to
§OO eV. The absolute values of GTs-*Zp had been previously obtained
by normalizfng earlier (1s-2p) measurements to the Born approximation

between 200 and 700 eV [?1te, Stebbings and Brackmann (195917. It is

thought that this method of normalization is accurate in this energy

" range. The absolute value of GIs-¢2s could thus be obtained in lower

energy regions where the Born approximation is not valid. In reducing
their data, however, Stebbings et al. (1960) assumed that in the

presence of the quenching field that the excitated hydrogen atoms

" radiated anisotropically. Because of this they multiplied their H(2s)

measurements by two-thirds. But Lichten (1961) pointed out that the
radiation was actually isotropic and hence the published values of
Stebbinga'et al. should be increased by 50 percent.

The measured cross sections, above 12.1 eV, included not only the
direct 18-28 excitation cross section but also that contributionnto the

production of H(2s) due to cascade from higher levels excited from the

ground state by electron impact. Using the transition probabilities

given by Bethe and Salpeter (1957), Lichten and Schultz showed that
the measured total 2s production cross section is equivalent to the sum

of the direct ls-2s cross section plus 21 percent of the ls-3p exci-

tation: cross section. Thellse}p'curve vas obtained by multiplying

} 4 ,
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(6"18__‘39)5““ by the same energy dependent factor required to reduce

( G‘ls"2p)80m to the experimental curve ob! “ined by Fite and

4 .

Brackmann (1958) and Fite, Stebbings, and Brackmann (1959). The same
general procedure was followed by both Lichten and Schultz, and
Stebbings et al. '
Finally a brief resume of the experimental results is in order.
The deduced direct (1s-2s) excitation cross sections of Lichten and
¢ Schultz and of Stebbings ei: al. are shown in figure 6. Stebbings
| et al. claim an experimental accuracy of about Z 10 percent near
threshold but this soon drops to % 20 percent or more at higher
energies.' Lichten and Schultz claim an experimental accuracy at least
two or three times that of Stebbings et al. for their metallic‘detec-
tor; However, their absolute cross sectiops, which are roughly twice
TN .. those of Stebbings et al., depend on the normalization of their curve
< 'T"":—':( to the first Born approximation between 30 and 40 eV. Thus, although
they seemed to have accurately determined the shape of the 6-.15029
curve, their experiment leaves the absolute value in doubt. Lichten
and Sci\ultz did make one absolute determination‘of 6“18‘28 at 11.7 eV.
The value obtained was (.28 *.14)yrao?, where a, is the Bohr radius.
This r‘és/q}t is compatible with either the Born approximation normali-
zation/ or t:.he‘ measur;aments of Stebbings et al. Hence the experimental

results still lgave the absolute value of the cross section in doubt

SR

by perhaps as ‘much as a factor of two.

W
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'2. Early Theories

Previous to the Lichten and Schultz exp -iment in 1959, there had
been a number of calculations of the excitaticn cross section Cr}s;;2a°
However, these were confined either to the first Born approximation,
Bates and Miskelly (1957), or to the zeroth order (total angular
momentum L == 0) partial wave — Erskine and Massey (1952), Massey and
Moiseiwitsch (1953), Bransden and McKee (1956), and Marriott (1958).
' Much present evidence indi;ates that the results of thé Born approxi-
mation are too high below 50 eV. Bates, Fundaminsky, Leech, and
Massey (1950) pointed out the inadequacy of the Born approximation
near the excitation threshold. Hummer and Seaton (19615 and others
now doubt the accuracy of this approximation below 100 or 200 eV.
. Kingston, Moiseiwitsch and Skinner (1960) made a third order Born
approximation calculation of (Fls_+28. It is coﬁpatible with the
corrected results of the experiment of Stebbings et al. (1960) at
energies above 100 eV, but at lower energies the calculated values
lie above the experimental curve of Stebbings et al. Although the
authors take this as an indication of validity of the hormalization
procedures of Lichten and Schultz, they themselves claim no great

accuracy, for their calculation below 50 eV. All of the zero-order
NN

-

~

partial wave calculations fall far below the experimental results,
over most of the experimental energy rénge, The obvious conclusion

was that higher partial waves had to be taken into account.

Percival and Seaton (1957) published a-study ‘showing how the radial
‘'wave flunction for arbitrary angular momentum, L, could be included in the

) . . »
J : .
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(1s-2s-2p) close coupling approximation, After the experiment of
Lichten and Schultz in 1959, a number of workers began to utilize this
partial wave theory to develop close coupling computer programs wﬁich
included the higher partial waves. The article by Burke and Smith
(1962) in the Reviews of Modern Physics gives a good atcount of the
work done up to that time. Subsequent papers by Burke, Schey and
Smith (1963), Omidvar (1964), and Gailitis and Damburg (1963) should
also be mentioned. Since at present the close coupling technique is
the most popular one for low energy calculations, a brief description
of it is included,

First let us delineate the exact problem and then investigate

~ various approximate solutions. Consider an electron being scattered

" by a hydrogen atom which is or;ginafly in the 18 state. By neglecting

the motion of the proton and taking its position as the origin of the
coordinate system, the Schrédinger equation for the system can be

written:
(H=E)Y(ra,56)=0 (1)

where r, and r, are the position vectors, respectively, of the free

1
and of the bound electrons while 0"1 and (,‘é are the respective spin

coordihates. Each of the spin coordinates may take the value 1/2 or

N

A-llé,'and the particles obey Fermi-Dirac statistics. For\Ehe trane

sitfbna considered here, spin orbit interactions afe negligible.
Hence we may write

o ‘ i oa_ ;. 2

. H=E=-V, ,:Vz ’ 2 "'-ﬁ"“E (2)

:'! g /
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In (2) H 18 the Hamiltonian and E is the éotal energy of the system,
while r12 is the distance between the two =~ctrons., All lengths ?re
'measured in Bohr radii{, and energy in Rydbergs, Since the spin |
coordinates do not appear in the Hamiltonian, the spin and space
dependent parts of the total wave function are separabie and we can

write

Y (somna) = X(66) WKr.).

The problem thus concerns the interaction of two identical particles,
obeying Fermi-Dirac statistics, in the field of an attractive center

1, 2

of force. By Fermi-Dirac statistics the total wave function must

be antisymmetric under the exchange of coordinates; hence

WG LE)=-W(5EG,56).

1f -X(G.l’ 6'2) is symmetric, W(EI’ ;2) must be antisymmetric, and
vice versa.
The spin wave function )L(GI, 6}) may conveniently be assumed to

be a common eigenfunction of the operators Sz end §?. Here Sz is the

_1 ~ The scattering problem involving two identical particles is
discussed in Mott, N, F., and Massey, H. S. W., The Theory of Atomic

Collisions, 2nd Ed., Oxford, Clarendon Press, 1949, pages 102, 143.

2 The quantum mechanical theory of two identical particles is
discussed at some length in Merzbacher, E., Quantum Mechanics,
New York, John Wiley and Sons, Inc., 1961, Chapter 18.

! ;o | .



z component and _S_z is the square of the magnitude of the total spin

operator. In units of § the eigenvalues ¢’ S_z are Ms =%1or0,

.
.

while the eigenvalues of S? are § = 1 or 0. In terms of the one

electron spin functions XI( 6") and 2’2( 03). the spin eigenfunctions

. of the two-particle system can be written in the form

=1 MS-'-'l xl({-) kx({‘) | ‘

s=1 ﬁs= o i'Li' [X, G CA) +X,Cx) X, (&) triplet
§=1 Mg=-l X, 5)X0H)

s=0 MS‘:‘: 0 ‘ 'r:z [ X.({'IX‘(‘X)"I,(‘}L)I‘(H] singlet

The triplet spin'functions are symmetric under the interchange of
spin coordinates and therefore must multiply a space antisymmetric
function. Similarly, the antisymmetric singlet spin function must
multiply a space symmetric function. To obtain the probability of a
given collision one must calculate the probability. using both
symmetric and antisymmetric space functions, and then average over

the spins. If the former probability is Ps (singlet) and the latter

PT (triplet), the total probability is -

+LE+387 .

We may\;now proceed with the solution of the spatial problem and refer

) again‘to the spin only when calculating the total interaction proba-
. _ ~

bilities.
The spacial wave function 11/(_;1, ;2) is a nonseparable function

of its vector arguments, and since, therefore, the spacial problem
« [4

canno't be solved exactly,’leom_e approximations must be made. A
| _ .

|
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reasonable approach is to expand (r,s £.) in terms of the eigene
P I» &

functions of the total angular momentum, which commutes with H, and

YWau,x)= ?;o W (r,n) (3)

"to write

Since these eigenfunctions are orthogonal, substitution of Eq. (3)

. into Eq. (1) yields

(H-E)Y(r,r.)=0 ()

Up to this point no approximations have been made. If the
1}/(rl, r ) could be found exactly and if all L were taken into

account, then we would have the exact solution of the problem.

. Unfortunately the \V cannot be determined exactly.

The close coupling procedure is to expand 1}/ (r y X ) in terms
of the eigen states of the hydrogen atom. The coefficients of the
expansion, which are functions of the position vector of the free
electron, are found by numerical integration. If an infinite number
of terms were included in the expansion, the solution of the problem
would ne exact. Omidvar (1964) has given the explicit form of the

Y
v

expansion as!

‘\P(r.,r)... (H—ﬁP,,)Z 2 ,,,',f'“t P(n, 4 m,7)

b . (5)
.’ : o ~
) XT U(&m&r'.')z_',,,' 2)
where AR , ' §
<P<nf'») Y R(ny) Y, (Lh) e
a /-
' /
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i1
is the hydrogen atom wave function with radial part rz.lk(nz ‘QZ' rl)
and angular part X’". (Q,) and que um numbers n, §, m,; .
-l L]
LY U(knz fl. rl) is the radial part end 3£'% (n,) is the
angular part of the free electron wave function with quantum numbers

k“z !1 m . The .relationah'ip between the wave r_mmber .ﬁ“z and n, is

given by : - ;
k = (E+ 7 ) (7)
AL
,?he constants C m, m “'-' (Jl 32 m, m, ‘ LM) are the necessary vector

»

coupling (Clebsch Gordon) coefficients which make the expansion (5) an
eigenfunction of the total angular momentum L. To insure that the
total wave function is either’symmetric (antiparallel spins) or antie
symmetric (parallel spins), it is multiplied by the coefficient

(L+ B Plz)' The operator P,
+1 in the symmetric and -1 in the antisymmetric case.

5 interchanges x, and x, vhile A 1is

An example is the L = 0, (1s-28) wave function used by Marriott

|  (1958): ’

Vo (is-15) = (1+BR) " [ULk0%) PC100s1)
\/.\ i ) )

ST Ul gn) pe2o0)]

(8)

.\\

- The free electron radial wave functions are requi.red to vani.sh at

=0 and to have the asymptotic forms g
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. -5, ihr
- '-'f_::v_‘ U(k,0,r) =4 winkr + a€ (9):

Lim uthor)= behy

+ Calculations which assume that only the 1s and 2s channels are open
are called (1s8-28) CC calculations; those which have the 1s, 2s and
2p channels open are called (15-28-2p) CC calculations.

In order that the close coupling \*‘(51. ;2) should closely

. approximate the exact wave function, the expectation value of the

energy operator is minimized with respect to the radial parts of the

free electron wave functions:

&S Y er) [H-ETW(5,5)drd =0 (10)

A\QK lIt has been shown by Kohn (1948) that the differences between the
scattering amplitudes obtained from these equations and the exact
scattering amplitudes are quadratic in the differeﬁé; between
WL (;’1, g_é) and the exact wave function.

Equation (10) is equivalent to a coupled set of 1ntegralli
diféerﬁptial equations which must be solved in order to obtain the
‘freq eieétron radial wave functions U(knz j&, rl). It if customary
nowgdays to solve these equations numerically. In practiégl calcu-
iations it is impossible to solve Eq;.(a) explicitly since only a
Etnite:numbeg of»té:ms-can be included in the expansion, If a trun-
catg? .exp'ane"ion '-{s"ueed, ti‘ie;, thqAC'C ‘Vtrunc i» not a solution |

' : ’. o R o //' R L . '
\, L : ' /S '
. o i , //, ‘5.
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'of the Schrédinger Eq. (L).3

Omidvar (1964), using the (1s~28-2p) CC xpansion, took into

. account all partial waves from L= 0 to 00. (lose coupling pro-

cedures were used for the low numbered partial waves, while the effect
of the higher partial waves was estimated using the rehular Born -
approximation. The CC calculations were broken off at the value of

L for which the CC and the regular partial wave Born approximation
were in substantial agreéﬁent. His results agree very closely with

the earlier (1s-28-2p) CC calculation by Burke, Schey and Smith

- (1963).

The (1s=2s) CC and (1ls-2s-2p) CC total cross sections 0ls—2s
are shown in Figure 6. As can be seen, they would tend to confirm

the normalization procedure used by Lichten and Schultz in reducing

‘their experimental data, even though near threshold they differ

substantially from the experimental curve of Lichten and Schultz.

One may still legitimately wonder, however, just how accurate even

‘the (1s-28-2p) CC calculation is. One test would be to include more

terms in the close coupling expansion of the \+{(£1, 52). Greater
confidence would be attained, however, if there were an accurate

alternate method to the CC procedure. In the next chapter such a
7 L. .

.

method is.outlined, and a calculation is carried out which calls in

~

question the accuracy of the (1s-2s) CC calculation and therefore, by

inference, also the (ls-28-2p) CC calculation.

3'Motf,‘N.'F, and Massey, H, §.°H., op. cit., pages 141, 217, 260.

7’ ’

; o :, | ///1
! T ,//



CHAPTER 11

The Nonadiabatic Theory

1. Inﬁroductton~

The nonadiabatic theory for atomic scattering is an extensibn of
a method suggested by Breit, and first used by Luke, Meyerott and
Clendenin (1952) for calculating the energy of.some excited states of
2-electron atoms and ions. The first papers on the nonadiabatic
scattering theory by Temkin (1960, 1961, 1962A) dealt with the problem
of the elastic scatter;ng of an S-wave electron by a hydrog;n atom ip
its ground state, At this time there was renewéd interest in this
problem because Roseanrg, Spruch and O'Malley (1960) had just calcé- '
lated rigorous upper bounds, as< 6.23, and at(,1.92; for the s;ngleé
and ériplet scattering lengths in the scattering of electrons from

atomic hydrogen. They assumed that the H ion has only one bound

state, with singlet spin. These scattering lehgths, which are equiva=-

lent to the zero energy scattering cross sections, were 15 percent
below the results of the most elaborate calculations performed up to
that time. For references to.these earlier works see Bransden,
Dalgarno, John and Seaton (1958).

The nonadiabaﬁic theory proved a very powerful tool in attacking

chisvproblem and in calculating the elastic phase shifts below 10.2 eV,

" the (1s+28) excitation threshold. For the singlet ‘scattering length

E

‘Tét'ukih (1962A) obtained a.s= 5.6, and )hi the triplet case Temkin and

.
i

I- . .

HEN
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Sullivan (1963) obtained a,= 1.7683, To date this is one of the two
most accurate sets of calculations of the S-wave elastic phase shifts
below 10.2 eV. The other calculation of cnmpﬁrable accuracy is éhat
of Schwartz (1961) who used Kohn's variational principle and 50 trial
functions of the Hylleraas type, Schwartz obtained thé values
a,=1.7686  .0002 and & = 5.965 £ ,003.

The nonadiabatic theory has since been applied, among other

problems, to positron-hydrogen scattering, Temkin (1962B), and to the

."\problem of one electron molecules, particularly (Hzf*, Temkin (1963A).

1

The radial and angular parts of the exact angular momenfum
eigenfunctions are separable.2 The angular part is a function of the
Eulerign angles (7, qp , and 1}7 , while the radial part depends on
the three scalar quantities r,, T, and 6912., As in Chapter I,

L, and r, are, respectively; the radius vectors from the proton to
the free and to the bound electron, while 6912 is the angle between

r. and S The orientation of the (51. 52) plane 'is described by

1
@ ’ @, and 'II/. We are particularly interested here in the zero

angular momentum wave function. In this case the angular part is a

1 . The discussion in the following two sections is essentially
taken from Temkin (1962A), but modified so as to include inelastic

processes.

2 Morse, P. M., and Feshbach, H,, Methods of Theoretical Physics,
Vol, 11, New York, McGrav-Hill (1953), p. 1719,
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constant independent of (%, ¢ y and ‘\y o+ Hence we can write

‘\P (rl)ra, - \F(r) ou)’ | “1);

. and the Schrodinger equation takes the form

aL 2 L oLy g : | :
[ RTINS T \'.'"";'/m'..o,z;;zanf“"%a'ga,‘) . (12)

If we take advantage of the fact that

Molg 26, [4"41 elz 96, P(CO‘QO';)]_ -‘Q(R*‘)P(ma"), (13)

the wave function may be expanded in terms of the Legendre poly-

" nomials, Py {cos 912):

W,E,6.)= 7 2(29"')’,‘@(1:1;) P(co20,3) (14)

Substitution of (14) into (12) gives an infinite set of coupled

equations:

g-';': "'%"t“ﬂ(‘*’)("' t )+E+—- '%"Mm}(h(m}f (15)

m:oMR"’ d) (rr) o -

The prime on the right hand side sum means that the term m= { is to

be omitted. In the region r, > r, '

M,,,, = (llﬂ)"-' (2m 40 Z'

n_o ,‘-n«n

.X ,/ P (coa0) B, (02 0) B, (Com6) a4n1Bd0 .



17

Undrr exchanpe ¢ I,y the three coordinataes of the B-wavn problem

10—-
- -t 3 . .
.tremsfmm nccording to r & vy and 6124- 12 Hence the required

symmetry conditions are that

-G"‘/(rl’ 1'2:.812) =i CL// (1'2’ rll,' 612)0
In terms of the expansion % this implies (as a necessary and

sufficient condition) that .
@"(r1 r,)) =+ % (ry ). N (16)
Equation (16) can be satisfied, and at the seme time the problem can

be restricted to the region > fz by imposing the additional

boundary condition

q)g(rl rz) , ] -r= o] triplet . '("
| 2 (17)
) . ".
. 2 ‘ o K
5n isﬂ(r1 rz) ’ = 0 singlet .
. =2

With this boundary condition the solution of the problem in the half
plane (r ) r ) is identical to the solution in the other halE plane

(¢, <r ), except Eor a minus sign in the singlet case. 1In Eq. (17)

%”[;“. is the derivative normal to the line r, = r,; specifi-‘
il 8 o . . . . .\
cally' T _1 . . .
. : C Q. ol ~ el -f-.l' : o "f;;
en h=r, Ji" SR TR

’

Because"oi".thé (rlr.';?').1 factor in Eq. (_-14),"‘fe I._m‘v'e_‘in both" cases

q)( 700 =0 e
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Figure 1l The v, D r, triangle, to which the whole mathematical

problem is“restricted. f is the outward unit normal
to the boundary of the triangle.

For energies between 10.2 and 12,09 eV the asymptotic con-

ditions on the 2(r1r2) are

T, e

<§ ST (gmimme‘ ")R,,(r)*-be'&""/? ()

t’.-;ao

I"’q:,..‘ q?,wm;'o ,",e:»‘: R
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In (19) A is the arbitrary normalization of the incident plane wave
while the parameters a, b, and d describe, respectively, the scattere
ing amplitudes for the processaes ls-ls 1s-2s, ls=2p. The quantiéiel
kn are defined in Eq. (7), and, as previously stated, the r.lkn’(r)
are hydrogenic radial wave functions. ‘

As the incident electron energy is raised above 12.09 eV, other
channels corresponding to the bound states of hydrogen become open.

For energies above 13.6 eV a dense infinity of ionization states is

also accessible. Since it is clearly impossible to treat all these

: j' cases, it will be assumed, in what follows, that all channels are

closed except those specifically stated to be open.

. The S-wave scatter;ng cross sections 6‘15-—)15 and 6.13-!25 are
completely specified, for 10.2 £ klz & 12.09 eV, by the coupled set
of Eqs. (15) subject to the boundary conditions (17), (18) and (19).
Clearly one must solve such a set of equations in some approximate
manner. One possible procedure is to define a zeroth order approxie
mation, Temkin (1962A), and then use this either in a multipole

| expansion analogous to Temkin's method, or perhaps alternatively in

an iteration scheme utilizing the two dimensional integration pro-
céhures developed by Temkin and Sullivan (1963). Both the multipole

'expansion and the iterative scheme have been tentatively examined and
" both have been found to be much more &ifficult'thaniiﬁ the\;ase of

" elastic scattering. Therefore; in this thesis only the solution of

the zeroth order approximation is Preﬂeﬁted., R

]
.
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3. The Zeroth order Approximation

The zeroth .order approximation is defined as follows, Note that

-— L M ' ;
MOM - (am+D*e Y'-MQI (20)
J “hence the explicit form of the <£L<r1t2) equation is’ |
Y R S ¥ _= ke | (21
' (BT;I +ont T +E)¢i (1:’;] - ;. am+ 1) #nn @M(';’;) . )

Let us approximate this equation by neglecting the right hand side,

(o . .
. .The zeroth order wave function Qii(rlrz) is then defined by

] 3
(3’2,',-': "';',:.‘. + %*E‘)é

to)

(hn)=o0, (22)

subject to the boundary conditions (17), (18), and the asymptotic

condition A ‘
é_.;”.\o Q"(";’i): (zﬂ—wkq_'_d‘ ei&n’?)‘qis(r")

K | ’ b. emﬁst(Vi) e

The zeroth order equation (22) is of particular interest because
Temkin (1962A) has shown that the exchange approximation, which uses

a trial 9y, not depending on the angle 8 ,, cf. Eq. (8)
vg Yup = (1 HBR)(U 5 RigCr) + U (n)R(n)), @

for the S-wave function, is in fact a variational solution of only
that part of the original Schrddinger equation corresponding to (22).
iConsider the variational ' solution of the complete S-wave problem,

Eq. (12), with any (symmetric or antisymmetric) function f(rl.rz)--

(23)
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wm from Eq. (8) for instance. We have then
S S Frn) (H=E)4(p,)d% &% © (24)

Here (H-E) represents the operator in the curly brackets in Eq. (12).

6, 391;( ©ia 0912) '

: “in (24) will vanish since f(rl,rz) is independent of 6 ,. Next

‘consider the matrix element of the complete interaction,

 *~2/:1'f 2/r2 . 2lt12. in (24):
jjf(r:ﬂi)(':f "'% 'r,z-;)f(r;,r;)d”.' d”i

-3

0 .00
= | !"I';f(r o Edrdg
o

= 27

m‘ib“

wl’

a3
~4y

-~

(

qlnn

. In these equations r, 'is the lesser and r, the greater of (rl,rz).

The (anti) symmetry of f(rl,rz) is used in the derivation as well as

]'f'. R e de } MO,;HOI:
— rdln — —
& T ra T ° )7;'*.,.1—-:7' mg’z

— L
-5

Hence the effective Hamiltonian in Eq. (24) is of the form

H°=-'J;;z—%-’fs——%-:

* . which is, of course, the form of the Hamiltonian in Eq. (22).

The zero angular momentum portion of the (1s-28) close coupling

epproximation, Marriott (1958), has a wave function similar to Eq.(8)

~ and therefore Marriott"obtéined a solution of Eq. (22). Thus the

e . ¢ .
- .
L - e e P

> - .
1 :



i '.LV"‘@—V e

[

“'\l,
PR

22

solution of the zeroth order equation obtained in this thesis will
serve as an immediate check on the close cou. 'ing procedure, as well

as serving as the basis of later, more exact, calculations of the

L =< O portion of the cross sections Gle1s and 6‘1.*2.. The

difference between the zeroth order problem and tl'_te (l's-Zs) CC

problem lies in the methods of solution that were used. This is

"+ discussed further in the next section, -

Ao Solution of the Zeroth Order Problem

In summary the zeroth order problem consists of the equation ‘
(v)=0 ' - (22)

and the boundary conditions

o)
3 (5,00 =0 < (18)
fl:'ﬁl. @l'}(r’z)z(_% M;l‘,‘l; +dge“'r:jﬂlyf’2) :

N-ye0 O . (23
+b,©° .'-rf. Ras (1)
and ‘ o |
@olo’(r’, r;) ’r.-zrl =0 : Teiplet A \
() (25)
c%? é (‘7 l;’) l':“':.: o Singlet

."In the remainder of the thesis the subscripts on a and bo will be

. | omjitted, Equation (22) can describe only relative s-states and is

therefore also called the "relative=s problem”. While it does

pouéas separable solutiona.'. the imposed boundary conditions make
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~will be expanded in terms of the separable ‘igenfunctions of Eq. (22)3

A

23

te)

o
(r,r,) non-separable. Following Temkin (1962A), ~€z> (v, x,)
» 12 o 12

@f.’ n .
. Chn) = -—-M&,r;+a.e )R, (v,)
o : (26)

The sum plus integral means, as usual, that the continuum s-states

of hydrogen in addition to the discrete states must be included. All

the terms in this sum plus integral go exponentially to zero with

large rl, and they are therefore often called virtually excited

o

states, For the discrete states

X, = (1 «n" )kt | (27)
and for the continuum : -
Xp=(1 +pz - klz) . (28)

With this relationship each term of (26) is an exact solution of (22).
The expansion (26) automatically satisfies two of the boundary

.conditions (23) and (18), but not the third (25). 1In order to

:’sattafy'(Zﬁ), at least approximately, we determine a, b, and Cn by

~ the variational conditions given' 1n Temkin (1962a): S
v, . ; - Xj b a"arg(b),pn ‘. p= 3..-0;”"'2 L (29)
TS .
Ix; = = IR
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N is the number of terms, beyond the first two, included in the

expansion (26), and the diagonal integrals 1, and 1 are

I = !.ol d):"(".v;)l:a r o)

‘ Since a and the (Cn).are complex, 2N+ 3 real equations result
from (29). These equations are linear in the Cn; hence 2N of them
may be solved immediately to obtain the (Cn) in terms of Re(a), Im(a),
and Arg(b). The procedure followed is analogous to that outlined in
part four of Temkin (1962Aj. The solution for the triplet case is
given in Appendix A. The integrals in Eq. (30) were obtained in
analytic form (see Appendix B), and were checked by numerical inte-
gration. However, in the singlet case, due to the difficulty of the
numerical integrations, the analytic results were in some cases only

" checked to one or two significant figures. In order to obtain
sufficient accuracy it was necessary to solve for the Cn using double
precision arithmetic, i.e., 16 significant figures wére retained in
the calculations. The remaining three equations are highly nonlinear
in Re(a), Im(a), and Arg(b), and were therefore solved numerically.
All calculations were performed on the IBM 7094 computer of the
Theoretical Division of the Goddard Space Flight Center.

"Lt is worth pointing out the converse nature of this technique
of solution to those usually employed. In most cases one approximates
the exact golution in terms of functions which are not solutions of

the equation, but do satisfy all the boundary conditions. In close-
coupling, for example, the basis functions are solutions of part but

BRI WS R S5 S e
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not all of the equations. The method that is here presented utilizes
functions which are complete solutions of the equation but do not
satisfy all the boundary conditions, In t'e latter method the smalle
ness of the deviation from the boundary condition is a very raeliebdble

index of the quality of the solution (providing this difference is
small enough)." '

The scattering cross sections obtained from (23) are:

Q

o T4 I € 19

I15is

!
+
|

{

<
o
&
~

= 32
60;-9:5 /, 1RI* (52)

In order to insure conservation of current, the constants A, a,

and b are required to obey the relationship
Im (A“‘a)zkllalz-.'-_kzjb)z . (33)
.To facilitate the solution of certéin non~linear equations
t " which appear in the problem, let o=
Case (1) = A= kl(l-ia). - ,; ;

" Temkin (1962A), section iv. -
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_ As a check on.the calculations the singlet chae;was also solved;
- o with® - |
| | 5:; Cess (11) A=k, , | :

and : . a= (xe?lh

-~ 1)721 (35)
bz&[(klxkz)(l-x‘)]"‘ el(6+éa)

matically satisfied. Hence the complex numbers a and b are fully
' determined by the real numbers Re(a), Im(a), and Arg(b). The results

of the computation are presented in Sec, 8 of this chapter.

5. The Scattering Matrix

If an exact solution were obtained for the zeroth order problem,

5

then the reciprocity condition” should be fulfilled and the scattering

cross sections G, ., and Gés~ls could also be obtained from this
s~ seme calculation. Although we have no direct check on how closely

;'igthe reciprocity condition is fulfilled, it is expected that when Is

. ]
- Viand 1
Y

~~

¢ are small enough, reciprocity is satisfied to a good degree of

\.guﬁf approximation. The cross section (725-13 follows immediately from the

'.4 Case (i) was suggested by Massey and Moiseiwitsch (1953), while
- case (i1) was taken from Karplus and Rodberg (1959). The difference
between case (i) and case (ii) should be merely computational. Howe
ever, as indicated in Appendix A, the equations to be solved in the
S two cases are quite different. Hence, if the symmetry boundary
] ). " .. condition, Eq. (17), is not satisfied sufficiently well, the two

- ' ‘.~ " cases may give quite different. answers.

F R

A derivation of the reciprocity theorem as it applies to

. scattering matrices is given by Blatt, J. M., and Weisskopf, V. F.,
Theoretical Nuclear Physics, New York, John Wiley and Sons (1952),

p. 528. . S o

In both cases the form of b is so chosen that Eq. (33) was autos

-
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reciprocity condition; one form of which is
2
02818 = (“1”‘2) 0 1s-2s
It 18, however, necessary to introduce rLhe rcattering matrix § in order

to obtain 6‘23-2s°
Many forms of the asymptotic boundary condition, Eq. (23), have

been introduced by various authors, Two of the more common variations

are of the following types:

o) “"r r '
"o @ (rg) =(emhnsT e )Rys (57 (36)
' | TR |
— + (&3/59)” [ e Ris ()
; 1) | ~R T T A
$xmy=(€ -5, PR n)
Vet . : :
A _ (37)
R r
- (R4 )28, " Ryt
In Eq. (36) the Tij are elements of the transmission matrix T
while in Eq. (37) the S1j are the elements of the scattering matrix S.
The‘coefficient (kzlkl-)y‘- multiplying ’1'12 and 312 is introduced éo
that T 1j and S 1] will be symmetric,
Equations (23) and (36) are related in the following way:
lt:ea\li'/lAl2 o LT (38)
T = k, (k;/k,) ba* / |Al L - (39)
" “The S and T matrices. defined by Eqs. (36) md (3’7) are related by |
s-'l-e-zn‘ S (40)

Here 1 10 the unit matrix.
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If the S matrix is required to conserve probability current, then

it will be unitary!

sst= ), : (:Al)

. If the reciprocity condition also holds, than the § matrix will be

symmetric?

.-
P

$,0= S, ° A | . (42)

From Eq. (41) 322 may be found to be

-ST. 5.8
5,,= __._1_1__1_%_2_1_ . | | (43)
I8y,

Finally, the reaction cross sections are given by the formula
2, 2 T
Oig— je = T”si.j - sij) /ki. ! (44)

where sij is the Kronecker delta function. The 6-23-23 thus obtained

are listed in Table VI.

6. Internal Consistency of the Solution

The diagonal integrals IS and IT’ Eq. (30), should ideally be

- zero, Presumably if enough terms could be taken in the wave function

expansion, Eq. (26), this should occur to an arbitrary precision,

" however, for ND 8 the determinant of the C-1 (j = 1, N) was generally

too small for accurate results to be obtained. By trial and error,

sets of terms in the expansion were chosen which minimized IS and IT'

The confidence we have in our results depends both on the smallness of

Is and IT and on the congistency of the cross sections obtained by

choosing different sets of virtual eigenstates. " The magnitudes of the
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obtainable 1, and I,r are shown in Table I, As can be seen, IS and 'l'..r

S

are both quite small for energies less than U it required to excite

‘the 38 level of hydrogen. As soon as the 3s threshold is passed, there

is a marked increase in the size of the diagonal integrals (particu-
larly in the singlet case). The size of the diagonal {ntegral con-
tinues to increase out to 30.6 eV. At these higher energieavthere is

also a marked decrease in the agreement of the cross sections obtained

'-by choosing different sets of virtual continuum states. Again this

was most bothersome in the singlet case.
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kl
(atomic units) -
0.8662
0.9

0.94

0.95
1.0
1.1 .
1.2
1.5

Table I

1x10™?
3x10“6

2x10°2

38 threshold

1x10™2
5x10° 2

2x10°%2

Ix10"2.

1x10°1 "

Satisfaction of the diagonal boundary condition, Is'-'-' IT= 0,

.

at various incident momenta k.

3x10-’

- 2x10°?

3x10™%

lxIO-‘-

- 1x1072

2x10-3'

4x1072

o 1x1072



Table 11

-

Investigation of the internal consistency of the singlet

nonadiabatic calculations.

The scattering cross sections

are given in units of ma,’ with the statistical factor 1/4
Each golution is specified by the virtual states

included.
included in the expansion (26).
defined by their principle quantum numbers 'n', while the
continuum states are defined by their momentum 'p'. The
case (i) results are given on the first line of each row
while the case (ii)-tesulta are in parentheses beneath

1.5 .

thenm,
ky Ig
atomic
units
0.9  3x10°¢
o : (1x10 6
0.9 1x10]3
(7x1079)
0.9  1x10°4
(5x1077)
" 0.9  5x1074
- (3x107%)
0.9  8x10 4
(7x1074)
1.0 - - 5x10_ 2
.+ (3x10 3)
l.d'\_ 7x10:3 ‘
7 (4x1072)
1x107!

(8x10'?)

l1s-28

0.0339
(0.0338)

0.0339

(0.0339)

0.0334
(0.0335)

0.0309
(0.0310)

0.0289

(0.0291)
0.0469

(0.0488)

. 0.0463
‘0.0481)

- 0.0131

(0.0196)

Lot

ls~ls8

0.4674
(0.4674)

0.4674
(0.4674)

0.4676
(0.4676)

0. 4680
(0.4684)

- 0.4672
(0.4680)

0.3263
(0.3290)

0.3283
(0.3319)

0.0958

The discrete states are v

virtual states

discrete continuum

34

p
0.05,0.3,0.6,0.9,1.1

0.05,0.3,0.5,0.7,0.9
1.1

0.05,0.3,0.5,0.7,0.9
1.1 :

05,0.3,0.5,0.7,0.9
0903

0.4,0.6,0.75,0.9

05
5,0.25,0.45,0.65,
5,1.0,1.15,1.30

.0
8
.05,0 3 0.6,0.8,1.0
e2,1.4,1.6

1.23.§:33.1.43.
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For the singlet case this behavior is illustrated in Table I1 by
the two top entries for kl== 0.9 and the entr s Eor k1== 1.0 and
k1== 1.5, These entries represent some of the better runs obtained :
- at these energies. The uncertainty in the singlet results can be
gauged by comparing case (i) and case (ii) results. At ‘the higher
energies the triplet results seem to be quite a bit more accurate
than the singlet results.

Above the 3s threshold, Tables I and II indicate that the
symmetry boundary condition, Eq. (25). has not been adequately ful-
filled., Part of the difficulty may lie in the restricted asymptotic
i'boundary condition, Eq. (23), for in reality the 3s and higher energy
‘¥ channels should be included at some of the incident energies we con-
sider. Howevef, it is our opinion that the chief difficulty above the

.38 threshold is not the absence of, for example, the 3s state from the

. asymptotic region, but lies rather in its absence from the region of

~ interaction. Partial confirmation of this can be found in the last
four k1== 0.9 entries in Table 11 which illustrate the effect of
omitting various low energy virtual states from the expansion. Experi-

ence has indicated, however, that a prudent.choice of continuum states

" at energies above 12.1 eV will minimize the difficulties caused by the

incompleteness in the expansion, Eq. (26).

A more relevant question is h;w these cross sections will change
  : by virtue of the redistribution of current when the totality of open
channels is included. Clearly the present calculation cannot answer

that question, although in some sense the assumption must be made that
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their effect 18 small. For if it were not, then the calculation of
scattering tn.the ionization region would ' a complete 1mpossibil§ty.
because their inclusion would entail a wave function containing noé
only a discrete infinity of bound excited states but a dense infinity
of ionized states as well. It is our opinion ;hat in élose coupling,

for example, when additional states are added at an energy where they

may be excited, their main effect arises from the increased flexi=-

" bility they allow the wave function in the region of interaction

rather than in the opening of the channels that they afford. Thus the

present method, which places virtually no restriction on the number of

' terms that can describe the wave function in the region of interaction,

is expected to contain most of the effects on the 1ls and 2s channels

' of a close coupling expansion with a similar number of terms.

7. Effective Range Expansion About the 2s Threshold

A final check was made to insure that our calculation was com-
patible with previous nonadiabatic (NA) calculations below the 2s
threshold. Ross and Shaw (1961) have recently developed a multi-
channel effective range theory. This 18 an extension of the ordinary
(single channel) effective range theory which can in principle describe
all channels of a reaction both above and below the threshold for a

new channel. The correlation is accomplished in terms of a real

T symmetric M matrix whose elements around threshold may be expanded in

a power series in the energy. The first two of these coefficients

reduce essentially to the scattering length and effective range in the
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one channel case. The M matrix has been used by Damburg and Peterkop
(1962) to extrapolate the results of 1s=2s c} se coupling calculatione
immediately above the 2s threshold to infer the elastic scattering ’
below threshold. 1In the same spirit we have extrapolated our present
’NA results tc below threshold. 1In this case, however.'fhe extrapos
lation was in the nature of a check as the NA results below threshold
have already been calculated.6 For compatibility the extrapolated
"~va1ues of Gls-ls'shOU1d then closely match the computed zeroth order
NA 618.18 below threshold. The usefulness of this check was brought
- home in our present calculations, when the values which had been com=
- puted at an earlier stage gave an extrapolated singlet ls-1s that
‘_‘Awas not cbmpatible with the explicitly calculated values below‘
_threshold. .This led to the discovery of a machine programming error
which had caused earlier singietvresulté;to indiCate a spuriously high
peak in 01525 CFOSS section,just:gpgvghﬁhéiZs,threshold, cf. Kyle ‘

and Temkin (to be published). .

6 A. Temkin and R. Pohle, Phys. Rev. Lett. 10, 22 (1963). It
should be emphasized that only results of the zeroth order or
relative s-wave problem of this reference are being considered and
these show only one resonance. On the other hand, the inclusion of
higher relative partial waves introduced more resonances. Cf. the
erratum to the above, Phys. Rev. Lett. 10, 268 (1963); A. Temkin,
NASA Tech. Note D-1720; A. Temkin, Proceedings of the Third Inter-
national Conference on the Physics of Electronic and Atomic Cole
lisions (Amsterdam, North~Holland Publishing Co., to be published);.
and Gailitis and Damburg, Proc. Phys. Soc. 82, 192 (1963). . v

!
'
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The T and M matrices are related ﬁot relative s-wave scattering
by the equatton7 |

T= k™ (M - 1k) k™ (45)
In this equation k is considered to be a diagonal matrix with diagonal

elements k,. The elastic scattering is then given by

i
Gis-1s= “’(“22 + k)71 ("11 “‘1" p-tieg) My Mo | 2 (46)
Equnding the elements of Mij about a reference incident electron
energy Eo} we obtain
Mu(z):MU(EO)r}anij(E-Eon (47)

In the effective range approximation the series is cut off after the
second te;m. We take Eo to be 10.2 eV; the energy required to excite
hydrogen from the 1s to the 2s state. The expansion is valid for .
| E €'10.2 eV, but in this case we must put k2=: i%, in Eqs. (45) and
(46). |
In the triplet case the expansion, Eq. (47), is valid over a

fairly long range; however, in the singlet case the presence of a
resonance just below the 2s threshold sharply limits the applicability
of the expansion. . According to the analysis of Ross and Shaw (1961)
o the effective range approximate formalism can describe only one

'narrow resonance below threshoid. Below this resonance the formalism

will not accurately predict the true.scatCering cross section.

7 Ross and Shaw (1961) ~ |
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Our expansion parameters Mij(go) and R . were obtained by fitting

]
a two term polynomial of the form, Eq. (47), ‘o the computed values

2

.°E M,, in the range 0 < k2 £ 1.5 x 10"3 Rydbergs. They are given’

1)
in atomic units in Table I1I together with the coefficients obtained
from the 18-2s close coupling values by Damburg and Pet;arkop (1962).
In figure 2 the computed NA singlet elastic cross section is compared
-with our effective range extrapolation. As can be seen, the extrapo-~
lation quite‘accurately reproduce_s the resonance near k12= 0.797.
The second peak at klzz 0.735 is spurious in the present zeroth

order problem but more resonances are actually present when relative

p-waves are included in the c:axlc:ulat:ion.8

. . . B . . at 8
L i A ! T, N NP

.8 See Gailitis and Damburg (1963) and footnote 6.
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Table III .

. The first two coefficients in the expansion of the M matrix

'..‘ R | elements at the 2e threshoid. eq. (5.3) "
: NA = nonadiabatic . . }.uq.‘” CC = close coupling®
: | Singlet SIS Triplet
NA cc S 7 cc
Mu(O) , 1.0610 . 1,300 ' - 0.0293 0.0301
M, (0)  -0.05%9 -0.0629 -  -0.0017 -0.0017
M,,(0)  -0.0368 ~0.0356 | 0.1208 - 0.1206.
Ry, 42267 482 L1333 L2
/\\ o R, 23,9292  =4.32 T 0.0642 -0.06
o R, 11.489  11.54 . 5.1528.  5.14

@ Close coupling coefficients taken from Damburg and ‘
Peterkop (1962) oy « TR L \




v

Figure 2. Comparison of the computed singlet nonadiabatic (ls-ls).
cross section (solid line) near the 2s threshold with effective range
extrapolations. Circles are the nonadiabatic effective range
extrapolation. Triangles are the (18-28) close coupling effective
range extrapolation of Damburg.and Peterkop (1962):. The figure is

4discus§ed‘in the text.
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- 8. Results
The results obtained from the zeroth ord-r approximation of the
L=o0 ' :
scattering crogs sections Ois-1s' O1s-2s’ G25-24 2F® shown
in Tables IV to VI and in Figures 2 to 5. For comparison purposes the

(18-25) close coupling results are also given. As previously stated

.‘A~the latter calculation is an approximate variational solution of the

zeroth order problem. The internal consistency of our calculations

‘ has already been exténsively examined in Sec. 6. For the nonadiabatic

" entries in Tables IV-VI the number of significant figures given indi-

cates the internal consistency of the calculation with the last:
figure being in doubt. For the singlet entries at kl== 1.5 even the
first significant figure is uncertain. Thg NA singlet case (15 Ccross
- sections are the ones which are plotted in fhe graphs; however, the
case (ii) calculations are of equal weight.

In Figure 3 the nonadiabatic 6]3-23 cross sections are compared
with the close coupling expansion with C{he 1ls and 2s channels open.
The close coupling results just above threshoid were kindly compdted
for us by Dr. Omidvar of the Theoretical Division of the Goddard Space
Flight Center.. They appear ?o be in good.agréement with those of
Damburg and Peterkop (1962). The other close coupling results Wefe

obtained from Marriott (1958) and Omidvar (1964), which in turn are

v

in good agreement with those;of Burke and his co-workers (1962, 1963).
" The noéadiabatic results ere About'LD percent lower than those of the |
H‘:~cloae coupling calculation. "In fact, the case (i) nonadiabatic
613-29'Ct°°° sections agreé quite well wifh tﬁé.variationall

’
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calculation of Massey and Moiseiwitsch (1953),

Figure 4 shows the zeroth order nonadiabat - elastic singlet

‘cross section in the neighborhood of the threshold (10.203 eV) and out

to 30 eV, A definite Wigner cusp is indicated at threshold. The close

coupling results, dashed line, also indicate a cusp at threshold. The

plotted case (1) G’ls-ls-is only 5 percent larger than the close

) coupling value at 30 eV, However, the case (1) cross section is about

20 percent larger at this énergy.

Our triplet elastic cross sections agree with the close coupling

- :results to better than one percent. Since the triplet cross sections

dominate in this region, the total nonadiabatic - G . ;.= (6'8 + "-t)

lies within two percent of the close coupling result.

In Figure 5 the 6-28-29’ derived in Sec. 5, are shown. Note the

Ramsauer minima in the singlet and triplet cross sections. Due to the

"+ requirement of conservation of current, 02g-24 cannot actually go to

zero at these minima unless G os-18 (and hence 6‘13_25) g0 to zero
algso. The narrow minimum in the singlet cross section at 1.87 eV
(dashed line) is caused by the presence of the 3s threshold at 1.89
eV. The 38 state must be included in the calculation for this minimum
to appea’r\. ‘ For this reason the CC calculation does not indicate its

presence. The exact shape and depth of this resonance are. uncertain

due to the scatter of our results and the large Is obtained -inside the

) resonance. There are undulations of a few percent in the singlet

6.15-13 and 6'15-29 at tihis poi'nt:, but the effect is quite small com- -

pared to the G2g-25 resqnan;:e'.‘, ‘These details in the L = 0 portion of

e

o
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633-25 may well not appear in the total cross section since the CC
calculation indicates that the L= 1 and the L2 2 contributions are
very important at the energies where the 5 ‘nima occur.

It would be of interest to be able to solve the zeroth order

equation (22) exactly by numerical means. A continuing'effort is
being made to do this with the noniterative method which has already
been used in the triplet case below threshold by Temkin and Sullivan;
(1963). So far the results have been unsatisfactor;. This is at
least partly due to the large effective interaction radius between

the 25 state of hydrogen and the scattered electron.

N
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Table 1V
The spherically symmetric portion of the L = O elastic
(ls-ls) cross section for the scatterin;, of electrons .

by atomic hydrogen in units of rraoz. NA = Nonadiabatica.
CC = Close coupling ls-2s”.

Singlet Triplet Sum

kl(a.u.) NA cc NA cC NA cc’
0.810°¢ 0.635

0.863 0.760

0.864 1.20

0.26429 1.337

0.8645 0.0

0.865 0.2925

0.8654 " 0.3893

0.8656 0.4255

0.8658 ‘ 0. 4465

0.866 0.4743

0.86601 0. 4768

0.86602 0. 4795

0.866025 case(i) case(ii) Threshold

0.86604 0.4790  0.4789

0.8661 0.4755 0.4754 0.4244 3.995 3.995 4.470  L.4194
0.8662 0.4742 0.4740 0.4235 3.994 3.993 4.468  4.4165
0.870 0.4955 0.4541 3.958  3.957 4L.A54 4.4111
0.880 0.4955 0.4954 0.4568 ' 3.864 3.864 4.359  4.3208
0.89 0.4826 0.4825 0.4454 3.773  3.772  4.256  L.2174
0.90 0.4674 0.4673 0.4324 3.684 3.684  4.151  4.1164
0.94 0.399  0.399 3.349 3.748

1.0 0.327 0.330 0.2824 2.905 2.903 3,233 3.1854
1.1 0.239 0.250 0.1865 2.300 2.297 2.550 2.4835
1.2 0.175 0.190 0.1397 1.833 1.829 2.023 1.9687
1.5 0.095 0.113 0.0905 0.974 0.9716 1.087 1.0621

The statistical factors 1/ and 3/4 are included in the -
cross sections. When available, case (ii) results were used
to find the total scattering cross sections.

All close coupling results were computed by K. Omidvar.
Some of these results have not been published, while the rest
are taken from Omidvar (1964).

The energy of the incident electron in Rydbergs is just klz.



Table V

The spherically symmetric portion of the L= 0 (1s=2s)
cross section for the excitation of atomic hydrogen by
electrons in units 11302.
CC=Close coupling 18-28".

NA
kl(a.u.) case(i) gase(ii)

0.86604 0.0066

0.8661

0.0142

0.8662 0.0204

0.870

0.880

0.890
0.90
0.94
1.0
1.1
1.2

1.5

0.0313
0.0318
0.0339
0.0448
0.046
0.035
0.031

0.013

Singlet

© 0.0066

0-0142

- 0.0204

0.0354

0.0314
0.0319

0.0338

0.0448
0.048
0.040
0.039
0.019

cC

0.0168
0.0266
0.0420
0.0356
0.0355
0.0375

0.0725
0.0701

0.0547
0.0241

8 see footnotes on Table 1V

NA = Nonadiabatic and

Triplet

NA

9.9x107¢
1.5x107°
7.8x107°
1.8x1074
2.7x1074
3.8x1074
9.1x10™#
1.9x1073
3.3x10-é
4.75:10"3
5.6x1072

cC

9x10”°

1.6x1077
8.3x107°
1.9x1074
2.9x1074

4x107%

2.1x1072
L. 4x1072
6.1x10°2

7.3x10°3

Sum

NA

0.0066
0.0142
0.0204
0.0355
0.0316
0.0322
0.0342
0.0457
0.050
0.043
0.044
0.025

cC

0.0168
0.0266
0.0420
0.0358
0.0322

0.0379

0.0746
0.0745
0.0608
0.0314

-e
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Table VI

The spherically symmctric portion of the L= 0 (25-2s)
cross section for the scattering of electrons by atomic
hydrogen in units of 7JTa 2, NA = Nonadiabatic and

- CC = Close coupling 15-258. :

Singlet Triplet Sum
NA cc NA cc NA cC

kz(a.u.) case(i1) case(ii)

0.00503 654. 654,

0.0114 622, 622, 650.3 205.0" _ 827.

0.0174  579. 579. 602.0  204.0 206.8 783,  808.8
0.0831 137. 135.55 170.6 172.3  307.6 307.85
0.1562 19.6  19.6  19.36 110.4 110.5 130.0 129.86
' 0.2052 3.69 3.68 3.515 71.21 71.20  74.89 74.715
0.245 0.441  O0.441  0.3303 45.99 45.94  46.531 46.27

0.365 0.43 0.41 - 7.37 7.78

0.500 1.8 1.9 1.532  0.02  0.2102 1.92  1.7422

0.678 1.8 1.8 1.115  1.37  1.36 3.17 2475
0.831 1.3 1.3 0.8980 2.45  2.112  3.75 3.010

1.225 0.60 0.55 0.5702 1.94 1.811 2.49 2,3812

a,See footnotes on Table 1V



Figure 3.

Figure 4.

Figure 5.

Figure 6.

FIGURE CAPTIONS

e

Comparison of zeroth order nonadiabatic 1s-2s excitation

cross sections with the close coupling (1s-2s) results.

The figure is discussed in the text.

Comparison of the zeroth order nonadiabatic singlet ls-ls
croés section with the close coupling (18-28) expansion.

The figure is discussed in the text,

Comparison of the zeroth order nonadiabatic 2s-2s scatter-
ing cross sections with the results of the close coupling

4

(18-2s) expansion. The figure is discussed in the text.

The top four curves represent.the total close coupling
theoretical and the experimental cross sections for the
l1s=2s excita£1on of H by electron-imp;ct. The two lower
curves give the L= 0 angle independent portion of this

cross section. The figure is discussed in Chapter I and

in Sec. 9 of Chapter II. .
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9. Discussion

Figure 6 serves to compare the relative s-w se portion of the s
‘ L = 0 inelastic cross section with the total close coupling theoreti=
cal cross section and with the total experimental cross sections
~obtained by Stebbings et 51. (1960) and Lichten and Schultz (1959). '
Examination of the graph indicates that the zeroth order nonadiabatic
L=0, 1s-2s cross section is reduced from the (1s-2s) CC results by
about the same percentage as the Lichten and Schultz cross section is
reduced from the (1s-2s-2p) CC results around the region of maximum
cross section (15 eV), or as the Stebbings et al. measurements are
from the Lichten and Schultz results over most of the energy range.
Thus this calculation reinforces what one would be tempted to believe
on looking at the (1s-2s-2p’ CC results in comparison with the experi=-
mental results: a more exact theoretical calculation should reduce
the theoretical cross section toward the experimental results.

"As to the amount of this decrease one wmust be infinitely more
circumspect in guessing. In the language of the nonadiabatic theory
the L = O part of the l1s-2s-2p calculation refers to the relative
s p wave problem whereas the ls-2s calculation refers to only the
relative s-wave problem. From that point of view, the latter appears
to be a better approximation relative to its complete solution (to
which the present paper is addressed) than the former is to its com-
plete solution. In either case, it might seem ridiculous to try to
approximate by two or three terms what in principle is described by a
singly or doubly (discrete plus continuous) infinite set of functions.
Here, however, one must recall what Seaton (1953) long ago emphasized,
that the explicit (anti) symmetrization of the wave function in fact
doubles the number of terms and goes a long way in including the
effects of the continuum in these calculations. Secondly, with regard
to the 1s-2s-2p calculation, the singlet L = O gives only the second
largest contribution to 05,25 . The largest contribution comes from
the triplet L = 1 state. Experience thus far indicates that the close
coupling approximation is much more accurate in triplet as opposed to
singlet states.
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"Thus it is very difficult at this time to infer the correct
normalization of the experimental result, In view of the many com-
peting elements which are either included or left out of the close
coupling calculation, our own opinion is that tl.. correct normali-
zation of the experimental result is between those of Lichten et al.
and Stebbings et al. and closer to the latter, very close, in fact,
to that curve where the error bars of the respective experiments
overlap (Hummer and Seaton /1961/)."°

This conclusion is supported by a recent (1s-2s-2p-3s-3p) close.
coupling calculation by Taylor and Burke (to be published) which pro-
duced more than a 30 percent decrease in crls-OZs at 16.5 eV from the
close coupling (18-2s-2p) calculation. .

Additional theoretical and experimental work is desirable on
this problem. In particular it is desirable tovtry to estimate the
complete nonadiabatic L= 0 cross section and thus obtain a check on
the (15-25-2p) CC results near threshold. Much more work remains to
be done before total nonadiabatic cross sections (sum over-all values
of L) can be obtained. In this connection it should also be pointed
out that this calculation indicates that the computational error in
the nonadiabatic results is large for incide;t electron energies
above 20 eV. Unless this defect can be remedied the usefulness of the
nonadiabatic inelastic sca£tering theory will be somewhat circum-
scribed.

There will probably be additional close coupling caléulations of
the total 1s-2s excitation cross section with additional open channels.

However, as the work of Taylor and Burke (to be published) indicates,

the addition of new channels greatly increases the amount of computer

9 .
Kyle and Temkin (to be published),
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‘time needed for the calculations. This may put a limit to the number

of hydrogen wave functions which may be used in the expansion of '\P‘.,
Eq. (5). '

It is to be hoped that more accurate measurements of the absolute' -
18-2s excitation cross section will be made in the near future. How-
ever, as arguments concerning the Lichten and Schultz experiment
demonstrate, the accuracy of final experimental results can be no
greater than that of the theory which is used to interpret the actual
measurements., Thus it may well be that in this problem theoretical
and experimental advances will continue to be strongly interdependent.

Finally it should be pointed out that the results of this calcu-
lation, together with those of Damburg and Peterkop (1962), show that —-
one must be very cautious in naively extrapolating cross sections to
threshold using the threshold behaviour law stated by Wigner (1948).
For the type of problem considered here, Wignei states that neir the
excitation threshold .

20+ 1
Oi-f oC kf ’

Here 6}.,5 is the probability for the target atom being excited from
the initial state 'i' to the final state 'f' and Rf is the angular
momentum quantum number of the final state. The present results,
Table 5, indicate that the law's range can be exceedingly small.
Gailitis and Damburg (1963) pointed out that when the 2p state is
included in the galculation, the 2s and\2p states are degenerate and

hence Wigner's threshold law no longer necessarily applies.

The End
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Appendix A

Details of the Case (i) Solution

9 .
It wiil be recalled that Qib is expanded in a series given by
©
Eq. (26),
(©) . R
(p. (T,‘T;) - ('?‘ M&,l‘.‘ +a@ u)/{m (r3)

; (26)
+6@ TR ()

+(Z +§dp)C, €™ " Ry (1),

- and that the coefficients a, b, and Cn are to be determined so that
IT (or IS), Eq. (30), is a minimum. The effort to simulate the sum
plus integral in the last term of Eq. (26) was restricted by the fact
that the computer could handle no more than eight Cn (see Chap. 1I,

Sec. 6). 1t was considered best, therefore, to replace the integral

by a simple sum,

s -Xg,
ane k”'ﬁ,,sﬁ;)d?“" Rf‘cf e ¥ u,;(!;') - (a-1)

=

An alternate representation of the integral as a sum

fC» G‘x' ‘:'Rns ()dp (a-2)
& ~%p % FXen
"'"é %ZC,;_‘Q B u&(’i)*c‘gexf uf(ﬁ)}%’-ﬁ_’)

was also used. There was no significani difference in the results
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obtained from {A-1) and (A-2); however, when (A-2) was used the
program was usually restricted to seven Cn due o the added factors }
(5 B, ). Because of this the form (A-1) was generally used. In
(A-1) and (A-2) N, represents the total number of continuum states

¥
included, while Up(r) is the coulombic s-wave function which obeys

the equation

2 2 -
( .d_2+ %-‘- p ) Up(r)-— 0. (a-3)
dr

Consider the triplet case (i) when form (A-1) is used; then 1

takes the explicit form:

- (% g™
L= 1@ uwl, o (a-4)

= Yo (1+ X3+ 2P E+27) + 4 (X2 2% )Ny

+XTyg 4+ 2% L (Y, + 5, X +7 2%) G §H(E =X +%2)ami]

"" “Zf(a'nlg'ac +e" I&zs) 615"(7” Ig'as—e,,Ij;’“)‘c‘:"’.Z}

-+ ;flj?{(:akli,-f'fi»‘izn) (l»1£?)t;1g" -

S HE LK
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.Here the C‘_l are given the form

c.= ¥+i€_ - | , ' (A-:s)

Let N1 be the number of discrete virtual states, then the total number

of discrete plus continuum virtual states is N = N1+ N2' The

L

coefficients X, 2 , and § , Eq. (31.), and the ¥ and € o are to be

determined by Eq. (29). The other quantities in (A-4) are defined

below.

x= (k40" : | -

(W’S):’ oom’m,l;@,r‘ 2
Mae RIS (r)dr

J \ Coeaf,r
‘ . | (A-6)
B = [ eoelhrhors comh-AITJR, R, S0
771- — J?M(&&&,)r_i— M(&,”‘_‘)f}‘ﬁu(r)ﬁntndr
*For n £ N1 the integrals
I ms In,ms
N (a-7)
Ipnmc In,mc

P’ '

N &,,,I' -KnT

(R ()
Co< knr ) e id i

i
N—rmy

" wherem =1, 2and n= 3,




1f also £< N1 then:

(ME),:?“"(ME),M

f "Cn“"(ﬂ"ﬁ (r)ﬁls(r)dr
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(A-8)

The integrals (A-6) -- (A-8) may be evaluated easily if one uses any

standard table of integrals and recalls that Rns(r) is just r times

the nth radial s-wave function of atomic hydrogen.

The remaining integrals (A-9, A-10, A-11) are given in

Appendix B.
| R ms %/%,,,r 'Xf,’,r () Uy (r)dr
(If mc) j ( cﬂk" e ﬂms -

m:l,2&ndn>N1,

(K,,"'JC )
(ME)p .’(ME)"P of % rﬁ ‘l‘)uP(t)dr
ns N1 and[)Nl,

oo -(xe'+kfl’)1"

(ME)f,’,g‘ =Je

o

Up () u,‘, (c) dr

n >N and Q)N1

(a-9)

(a-10)

(a-11)
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The X and en may be expressed in terms of X, # , and $ by

use of Eq. (29). The equation

9L = .12
| 7/30;’ o (A-12)
actually stands for a set of N equations linear in the Uh. Similarly
alr/3¢, =0 (a-13)

stands for N equations linear in the ¢ .. These two sets of equations

yield

%= S,(n)+ S, X+t (5,(n)Coes=G m)anl)  (r-14)

and

&, =S, mz* + &« Z (S;(n)am§ +5,(n) red) (a-15)

where
n) ' .
Sjtm) = '-D;' /dd’ F=b9 (A-16)

Here det is the determinant of the matrix

. (a-17)
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and the D (n) are the deternminants obtained by replacing the nth

]

column of the above matrix with the column vector:

=1 (Iplls e Ipnls)

)

s o« o 1
pple : pnlc . .

j=3 (Ipzc""lpzc)

j=2 (1

The equation v :

oI = f ‘
S Tx = O . (a-18)
is linear in x and yields

X= = afw, ~ 52 (12 oos = W aing) (a-19).

where

WS Mg + 27 Ip. S0 )

W= (1+ny) 1-2;1%,‘ S, (m)

lf | | | (A-20)

W, =
= %, *2%:53"’)11,’,&

W";—. 7]_ *J;Iﬂnc Sq(”).}

Next note that :
1y /35 =0 (a-21)
1s quadratic in z. When (A-21) is solved for z( § ) one obtains

2= {-A, + (A ~+AA,)"]/ 24, (A-22)



where R = A, toe(§) = Ay, wen (§) |

na, = R“ + Ay Coel( 2§)+ H,cfci.n(“)

A, = Ay oo (§) — Ay, =n(§)
and

nm < gf *'?é Igac Sa (n)

Ay, =, 1474; Ig,zs S.(n)

Rag = <O R= R/ 24+ 2 (S il =Sim Ty 15)

Fap = (WR, + W, R,)/ 20,

Ay = % (W R, —W,R) ]2 b

Ajq =5+ WR./w, ""'Z,,'S."')Ig,ac

Ao =N - M’lﬂo/lﬂ/‘t +2% S,("fl-pa.zc
R, = 5, +3Z Sz(n)l'glzc

R,

M +2Z 5, Ipss

At this point all the coefficients X, Z , &, and €, ore

expressed as functions of §. In order to determine the value of §

which will minimize IT’ let

W = L))z (a-23)
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Then the zeros of Wq will correspond to the extrema of IT. The zeros
of Wq were found by programming the equations piven above on the com=
puter and sweeping § from O to 2TT . Two identical minima of I,r '
were found; one for O%£§< TT and one for Tr€ § <M. The minima
in IT and Is‘were very sharp and a mesh size of A §= 77 /10,000 was:
sometimes needed just to find them. As a rule GIs-Zs varied with
(6) so rapidly near the minimum of L. (or 15) that the accuracy of
615-23 would have been restricted to three or four significant
figures even if no other difficulties had occurred (see Chap. II,
Sec. 6). On the other hand, st-ls varied slowly near the minimum
in I, (or IS) and could therefore be determined with much greater
accuracy.

The solution of the singlet case (i) problem is completely analo-
gous to that of the triplet, In fact, if the terms in IS are grouped
properly, much of the triplet machine program may also be used in the

singlet case. Define .

h

;i: {(",%;-rg-r ) 'v—énév;-rim&x]ﬂu(v;}

g;) (-2 +§7;)f e Sk st(“.)]} (A-24)

=




Then
= ()ar S SE=tf [ Har
SI,',’,; =!wﬁ Vo dr jSI-,;oc:!’z Vp dr
(a-26)
STpee= [Fypar 5 STpu=d HWdr
and
(SME)?& = !w\é Vg dr (a-27)

1f one uses these definitions, the equations (A-IA)Ato (A-23) may be
used in the singlet solution with only minor changes in the defi-
nition of certain terms.

When case (ii), Eq. (35), is considered, the problem becomes
much more difficult from the computational ;iewpoint. The case (ii)
solution is very similar to that of case (i) through Eq. (A-20), One
is able to solve for x = x (51, 62), but the equations for the
scattering phase shifts 81 and &é have to be solved numerically by
sweeping ¢, and &, from 0=?2JT . Because of this a case (1i) run
required about twenty times as much computer time and about ten times

as much of the programmer's time as a case (i) run.
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e

Integrals Involving Up(r), the Continuum Coulomb Wave Functionl

"All formulas are obtainable from the very general formulas of

Alder et al. (1956). The results involve, among others, the various
kinds of hypergeometric . . . functions. The notation for these is

- standard aside from minor variations. Definitions may be found in
innumerable books; we mention only Morse and Feshback (1953). Many of

" the formulas are not manifestly real; nevertheless, they may all be
shown to be real. Those matrix elements which should be symmetric

"with respect to the interchange of initial and final states can be
shown to be symmetric. The reality and symmetry are, in fact, closely
related.

"The continuum coulomb functions are normal;zed as follows:

Up(r)'= re""P"F(H ?Pj 2, 2ipr) eos

+ . F(a;b;x) is the confluent hypergeometric function . . . For the
- purpose of giving the discrete continuum matrix elements, {t is con-
" venient to write the discrete wave functions in the form

. \/ " Rastm) = A‘ ;: Cnj r’
-‘Mhere an is the coefftcient of rj in
' " 1
Rus(r) = (ni™ (o) @ F (cmot; 2;arn) -

The integrals given here were checked by numerical integration.

~To inauye that the poles in the complex integrals were placed in the'
éorrect Guadrant it was found advisable to use two arctangent

'funcﬁfons in the machine program. The first (tan-l) had a“range from

N .=T2 to W/2, while the second (Atan) had a range from O to 277 .

~

P 1 This appendix is very similar to the appendix in Temkin (1962A).

The quote and a number of the integrals are taken directly from this

- ‘source. » / ‘
¢ ’ ' * ’ ' C . . ’

~ , ! /
\. : ; ;
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Triplet formulas:
(ME)y, = { [ arexP (G tail ) - Lt TarrtExh]
+e Lff?’i) (45 “(Ezf)'))]/[ K+ (-2l *(fﬂ’)j}'

ol sl gy Y aﬂdi-('(‘f,’-fa? P P2
X{F( (‘e)('P ,I,X) Az"'(f,’—f)" F(' ‘ﬂ)lftlz)x)})

where F(a,bjc;x) are hypergeometric functions, g = X, "‘Kf‘
. p g

Cx =lp e /LA + (py+ )% s and y = 1-x,
(ME),y = 2 Cop 8 (hap)
where Anp =Ky +Kp +717 gi(A)=J e Uy (r)dr
Hence g}-(g) =-(%)é, (), and .
o = M)A’(A )
= (XrpY) expr-ap tai' (%),

The integrals 9}“) may also be used to derive the matrix elements

Tom(g)"
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Define:
Jpse (#n) / |
Jpss (k) ( ) T Up (r)dr
= (& = ~(Am+ikpm)r s
3».)[ 77T rd Uptr)dr

- V;u,n){@.m Leam]]
where lm =m-1+' )(p; m= 1, 2; and
()= LO0P4 )+ @ARFT " @XPL4 (to'Sh + 1o £5)]

— 22k
G = 3p bn [SELAL ] 1 Qi (m22E5)

2, p24ba P -t P+
T()= ;ff,g:f;:}{fjm). CXP[-# (fai'l +tai 2]

+ 2
6(3) = 2 bnf 2L Qo 12 o Fihge

2 2 19k
— [ (3 =38P 2+2Y+36 42 (1—1)'] ]
k) = { L%+ ) 4 4228 T

x@xp{-§ [ tori' Bt +tar' Bk ] ]



8,2) = 53 [FHELL ] - alomlor S5
+30lan| ff 3]

Then Ig le%,c ('& ) ) If,g JJ;UIS (&:) J

and Igz(g) _ % [2 Jp:( )(’1) Jpg(:)(ﬁ. )]

Singlet formulas (the symbols have the same meaning as the corre-

sponding triplet formulas):

( SM E)fﬁ:: [ 2Xp Hp + P+ X5+ X K (X' = f,’l)](ME')ff:

28 g0 852) - B2 1 (25E
+2exp (L5 far'( ) A tan (25 )

) EU=B 1P 2;X)
+ ‘(Zf;g ,ﬁn)’] A*+(f+7)* J

(SME)'”)P = (Kn””-'gcw-{a{n +Anp) g}uu?)"j‘gf" (}np)} ‘
+3 Copd{On+Anp) 5 (Ana) =5~ Fia Gnp)
SIpis =42 {(Kp +A,+1) Ipes (f) = (Xp+4, +4;) Jpss (%)

‘&,(K-p-flf") Jpnc (&,)} J
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SIpe = 2 {Ocp + 2, +0) Tppe (R) ~O<p s+ £) Tpe (4)

+ ke, (Xp+2,-1)Jpis (;Q')} )

S If as = -2‘}2 { - ('zkf’ +22,+3) J;?ps (4) +(3/lf,, +id, 12 "}/) J}ls (4)

= Jalkp +20 +2K ) o5 () + by (2Kp 1200 =1) Ty (R,)
— R, (Kpti,~-% )Jpac U%,)})

Slpzc = 2‘&; (2kp +24;:+3)JIp,c (k) = (xp """‘1'*2‘:*’)9;0::(’!)
+ S (Kp 'f"z_, +2 k:)Jpzc(téz) 'f‘g;(l )Cp-f'll;"}Jf,; (&‘)

- ﬁz (kpt+a,- a)Jpas(ﬂzy.
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